本篇文章给大家谈谈钢材扭转试验曲线,以及材料力学扭转实验曲线对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。 今天给各位分享钢材扭转试验曲线的知识,其中也会对材料力学扭转实验曲线进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

低碳钢扭转曲线为何没有下降段

低碳钢扭转曲线没有下降段的原因是出现了颈缩现象。在低碳钢的扭转过程中,当试件承受的剪切应力超过其抗剪强度时,试件将产生剪切变形,并逐渐形成颈缩现象。

弹性阶段OA:这一阶段试样的变形完全是弹性的,全部写出荷载后,试样将恢复其原长。此阶段内可以测定材料的弹性模量E。

低碳钢受拉时断口局部颈缩,有明显屈服阶段;扭转时断口为横截面,变形破坏机制主要是剪切力。铸铁拉伸没有明显颈缩,铸铁成分一般是共晶白口铁或者过共晶白口铁,脆性材料,故无明显屈服阶段。

低碳钢扭转时发生屈服,加工硬化,最后断裂。塑性变形量较大。铸铁扭转时几乎不发生塑性变形。低碳钢的抗剪强度低于其抗拉强度,所以扭转破坏发生在切应力最大横截面上,破坏从外向内一次发生,为剪应力引起的。

铸铁拉伸曲线前段是倾斜直线,后段是斜率较大的曲线,而且没有拐点。从拉伸试验分析,低碳钢有较好的塑性,有明显的屈服点,较高的延伸率和断面收缩率,材料断裂前先发生较大的塑性变形。而铸铁则没有这些优点。

低碳钢试件受扭转时沿场截面破坏,此破坏是由横截面上的切应力造成的,说明低碳钢的抗剪强度较差,铸铁试件受扭转时沿大约45度斜截面。低碳钢属于塑性材料,拉伸过程中有明显的屈服阶段,有明显的颈缩间断(又称断裂阶段)。

如何判断低碳钢和铸铁的抗扭强度极限

铸铁为脆性材料,其压缩图在开始时接近于直线,与纵轴之夹角很小,以后曲率逐渐增大,最后至破坏,因此只确定其强度极限。

材料性能不同:低碳钢是塑性材料,低碳钢抗压能力非常强,而铸铁是脆性材料,抗压能力远远大于抗拉能力。

低碳钢:扭转试验——变形很大,旋转很多圈,断口是平面,属于剪切破坏 拉伸试验——变形很大,断口缩颈后,端口有45度茬口,属于剪切破坏 压缩试验——呈腰鼓形塑性变形 韧性材料的抗剪切强度小于抗拉伸强度。

因此,其强度极限一般是不能确定的。我们只能确定的是压缩的屈服极限应力。2.铸铁:铸铁为脆性材料,其压缩图在开始时接近于直线,与纵轴之夹角很小,以后曲率逐渐增大,最后至破坏,因此只确定其强度极限。

低碳钢的抗剪强度低于其抗拉强度,所以扭转破坏发生在切应力最大横截面上,破坏从外向内一次发生,为剪应力引起的。

钢材应力应变全曲线

弹性阶段:该段的应力与应变成线性关系。屈服阶段:该段钢筋将产生很大的塑性变形,应力应变关系呈水平直线。强化阶段:该段应力应变关系曲线重新变成上升趋势,将达到钢筋的抗拉强度值的顶点。

真实应力-应变曲线在发生颈缩前和应力-应变曲线完全一致,在颈缩后,由于实际截面积发生变化。真实应力-应变曲线所记录的是实际载荷/实际截面积,而应力-应变曲线所记录的是实际载荷/原始截面积。

应力-应变曲线 通常称为工程应力-应变曲线,它与载荷-变形曲线相似,只是坐标不同。

应力应变曲线可以用来描述材料的弹性、塑性和断裂等特性,是材料力学研究和工程应用中不可或缺的基础。应力应变曲线的形态 应力应变曲线通常分为四个不同的阶段:弹性阶段、屈服阶段、塑性阶段和断裂阶段。

低碳钢为韧性材料。其拉伸时的应力-应变曲线主要分四个阶段:弹性阶段、屈服阶段、强化阶段、局部变形阶段,在局部变形阶段有明显的屈服和颈缩现象。

关于钢材扭转试验曲线和材料力学扭转实验曲线的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。 钢材扭转试验曲线的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于材料力学扭转实验曲线、钢材扭转试验曲线的信息别忘了在本站进行查找喔。